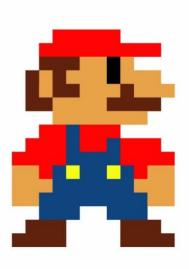
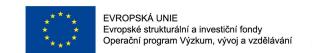


E-learningový kurz

Modern quantitative methods and shape analysis in archaeology

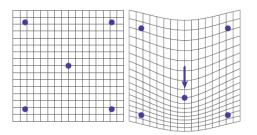
3D landmark analyses


Analyses of 3D landmarks and semilandmarks

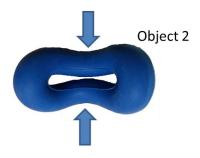


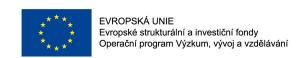
2D is cool but we are living in 3D...

VS.

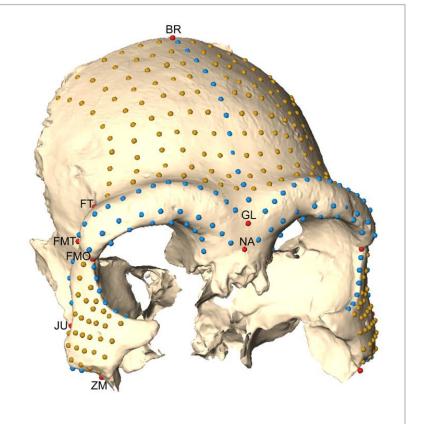


Sliding semilandmarks in 3D*


Uses property of **bending energy** of thin-plate spline (quadratic form in the locations of the target landmark structure)

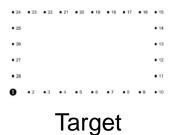

Analogous to Procrustes analysis

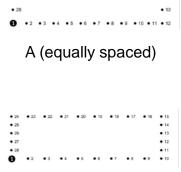
- Procrustes analysis minimises the sum of squares between objects
- Bending energy minimises the sum of squares in the complementary feature space of bending

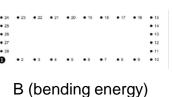


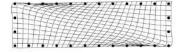
Sliding semilandmarks in 3D

Bending energy


- is invariant to translation, scaling and rotation
- can be used for 3D landmarks, curves and surfaces







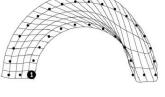
Why are sliding semilandmarks better than equally spaced points?

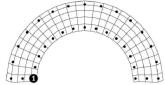
A=>Target (equally spaced)

B=>Target (bending energy)

Target

3D (semi)landmarks

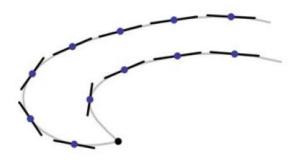

Why are sliding semilandmarks better than equally spaced points?

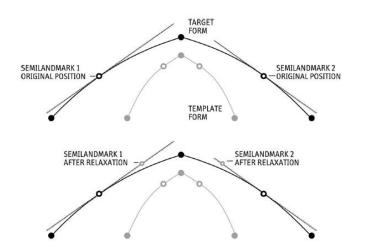

A (equally spaced)

B (bending energy)

A=>Target (equally spaced)

B=>Target (bending energy)

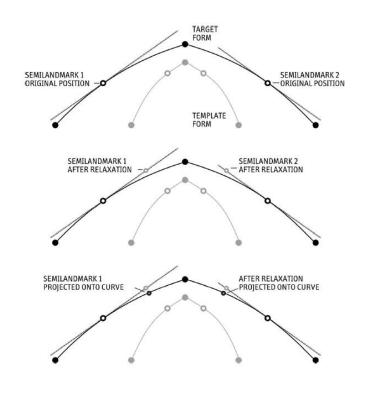




Principles

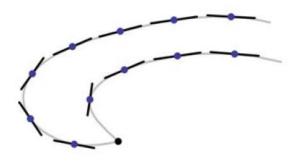
- (1) We have Template form and Target form
- Template is the reference (on what we align)
- Target is the form whose landmarks we want to align
- (2) Semilandmark on Target slides along its tangent till its distance is with corresponding semilandmark on Template is minimal

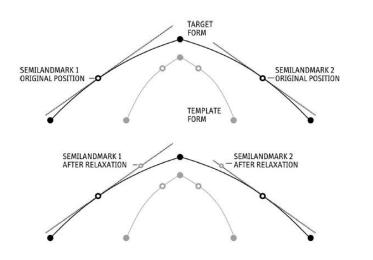
But landmark is no longer on the curve (!)



Principles

- (1) We have Template form and Target form
- Template is the reference (on what we align)
- Target is the form whose landmarks we want to align
- (2) Semilandmark on Target slides along its tangent till its distance is with corresponding semilandmark on Template is minimal
- (3) Semilandmark is projected onto a curve

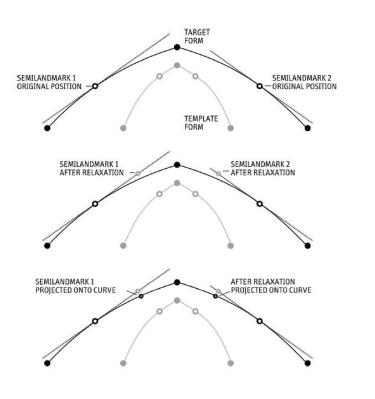




Basic algorithm (analogous to GPA)

- (1) Calculate tangents for each semilandmark.
- (2) Relax all specimens against the first specimen.
- (3) Compute the Procrustes average configuration (=new template).
- (4) Calculate new tangents.
- (5) Relax all specimens against Procrustes average of step (3).
- (6) Iterate (3) to (5) until convergence.

But landmark is no longer on the curve (!)





Extended algorithm

- (1) Calculate tangents for each semilandmark.
- (2) Relax all specimens against the first specimen.
- (3) Replace each slid semilandmark by its nearest point on the (curving) surface.
- (4) Compute the Procrustes average configuration.
- (5) Calculate new tangents.
- (6) Relax against Procrustes consensus of step (4).
- (7) Replace each slid semilandmark by its nearest point on the surface.
- (8) Iterate steps (4) to (7) until convergence.

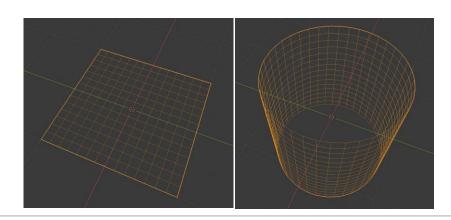
Should be used on shapes with sharp curvatures

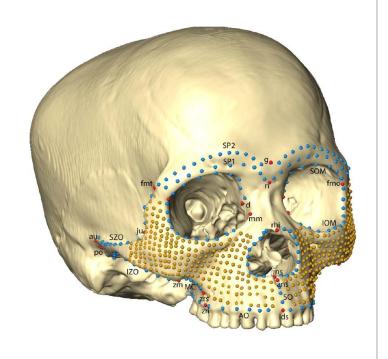
How many semilandmarks?

- More is better
- BUT should represent a geometric form
- e.g. for the human neurocranial 150-200 semilandmarks

Initial data can be

- Discrete landmark points
- Discretely sampled curve/surface
- Volume image data (voxels)

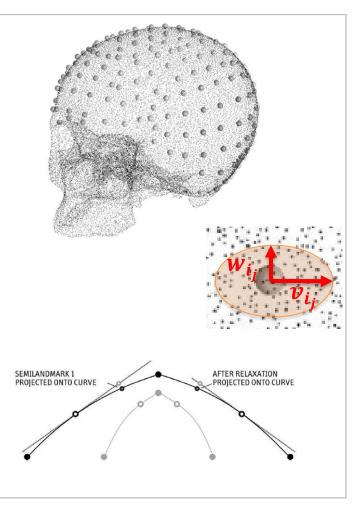



Curves in three dimensions

- The same as in 2D
- Usually points equidistantly spaced along outline arcs

Surfaces

 For planes and cylinders there exists equally spaced points, for other surfaces only approximations (!)

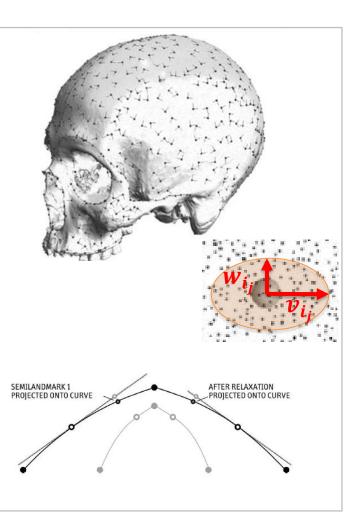

Surfaces procedure

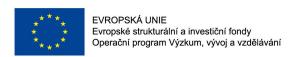
(1) Build reference/template

- Begin with huge number of points
- Make a mesh of fewer points by thinning the redundant point cloud (points should be more dense near ridges of the surface)

(2) Warp reference to the landmark configuration of another specimen

- (A) Points nearest to the warped mesh are taken as a starting positions
 of the semilandmarks
- (B) Resting surface points are used for sliding algorithm
 - 2 dominant eigenvectors of their variation in small neighborhoods around semilandmarks are used to specify the vectors v_{i_i} , w_{i_i} of the tangent planes along which they slide
 - The slid semilandmark can be projected down to the original surface according to the quadric approximation of the surface perpendicular to this best-fitting plane
- (3) Repeat (2) for every specimen in the dataset


Surfaces procedure


(1) Build reference/template

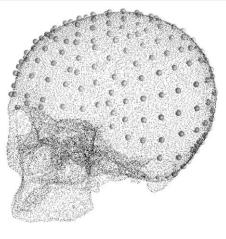
- Begin with huge number of points
- Make a mesh of fewer points by thinning the redundant point cloud (points should be more dense near ridges of the surface)

(2) Warp reference to the landmark configuration of another specimen

- (A) Points nearest to the warped mesh are taken as a starting positions of the semilandmarks
- (B) Resting surface points are used for sliding algorithm
 - 2 dominant eigenvectors of their variation in small neighborhoods around semilandmarks are used to specify the vectors v_{i_i} , w_{i_i} of the tangent planes along which they slide
 - The slid semilandmark can be projected down to the original surface according to the quadric approximation of the surface perpendicular to this best-fitting plane
- (3) Repeat (2) for every specimen in the dataset

Surfaces procedure

Results of Procrustes superimposition

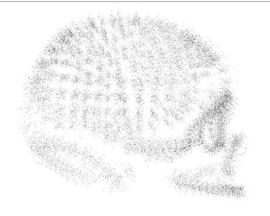


Example on cranes used for study of sexual dimorphism (Materials and Methods)

Dataset:

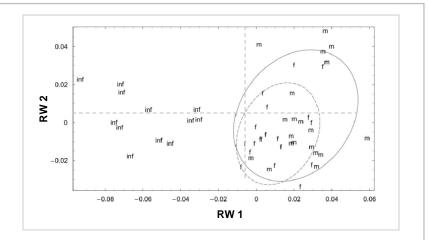
- 52 human crania
- 20 adult M, 20 adult F, 12 subadults
- 435 landmarks:
 - 37 anatomical landmarks
 - 162 semilandmarks on 7 3D curves
 - 236 semilandmarks on surfaces

Acquisition: Microscribe G2X



Example on cranes used for study of sexual dimorphism (Results)

Final Procrustes superimposition



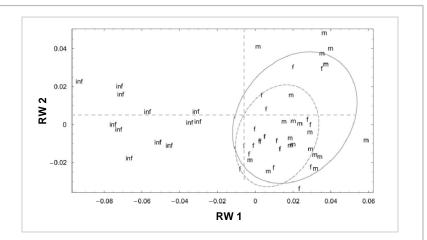
Example on cranes used for study of sexual dimorphism (Results)

Final Procrustes superimposition

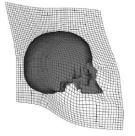
Plot of first pair of relative warp (RW)

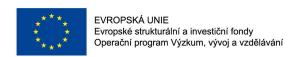
1st RW: ontogenetic development (children vs male adults)

Example on cranes used for study of sexual dimorphism (Results)


Final Procrustes superimposition

Plot of first pair of relative warp (RW)


1st RW: ontogenetic development (children vs male adults)

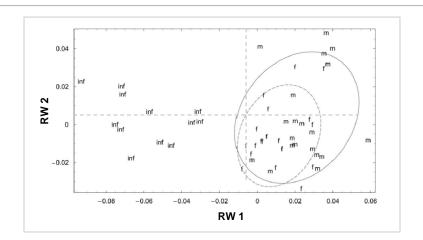

Visualisation of 1st RW as a thin-plate spline

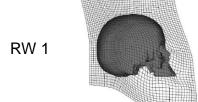
- Enlargement of the face relative to the neurocranium
- Prognathism
- Axially extension

Example on cranes used for study of sexual dimorphism (Results)

Final Procrustes superimposition

Plot of first pair of relative warp (RW)


1st RW: ontogenetic development (children vs male adults)

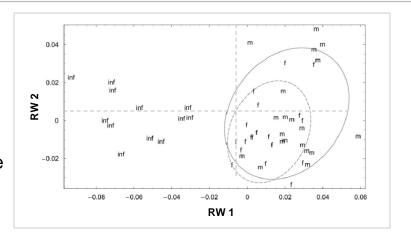

Visualisation of 1st RW as a thin-plate spline

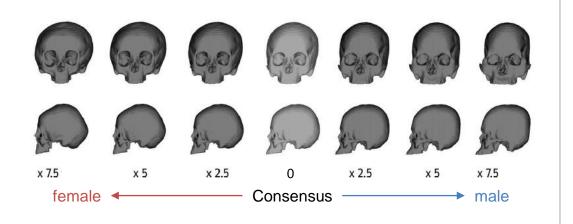
- Enlargement of the face relative to the neurocranium
- Prognathism
- Axially extension

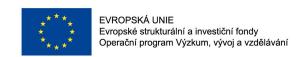
Visualisation of 2nd RW

Cranial width

RW₂


Example on cranes used for study of sexual dimorphism (Results)


Difference between males and females


- Procrustes distance used as test statistic
- Monte-Carlo permutation used to assess significance (3.000 permutations)
- p<0.04 => different

- Females have...
 - more globular skull
 - more rounded orbits
 - thinner upper jaw
 - flatter face
 - "rounded skull"

Example on cranes used for study of sexual dimorphism (Results)

Difference between males and females...

- ... expressed as components of allometry and non-allometry
- allometry vs non-allometry: difference in parietal bone, zygomatic region, orbits


zygomatic region

orbits

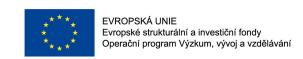
female male

Rest


Example on cranes used for study of sexual dimorphism (Results)

Difference between males and females...

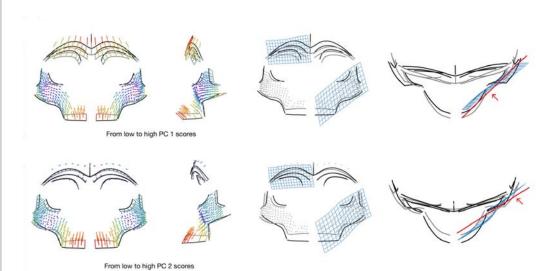
- ... captured by landmarks and semilandmarks
- mostly by landmarks
- but local features by semilandmarks

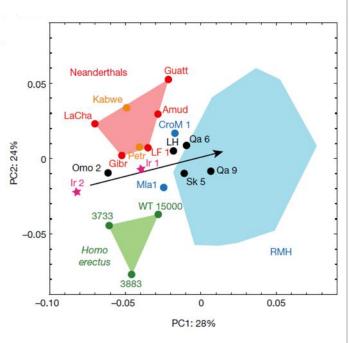


Sexual dimorphism captured by...

landmarks semilandmarks

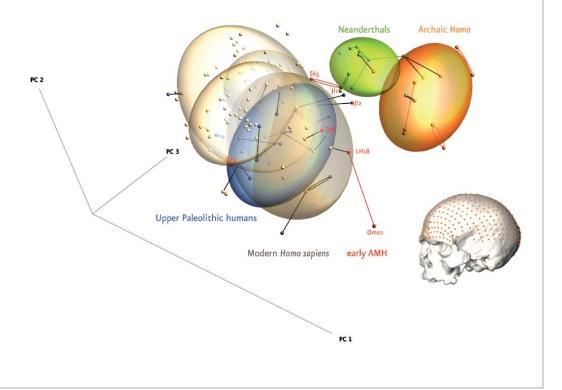
female — male





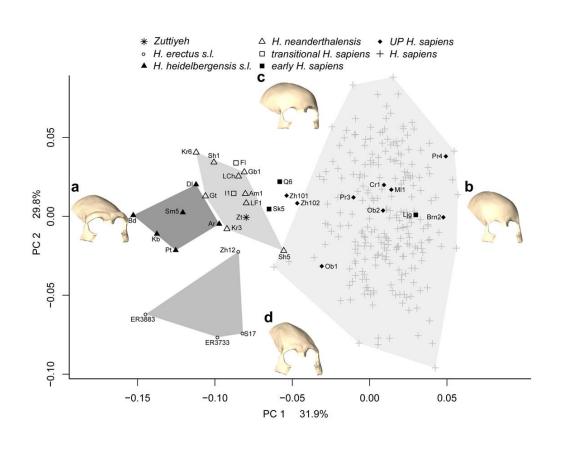
Other examples...

... faces among *Homo* groups



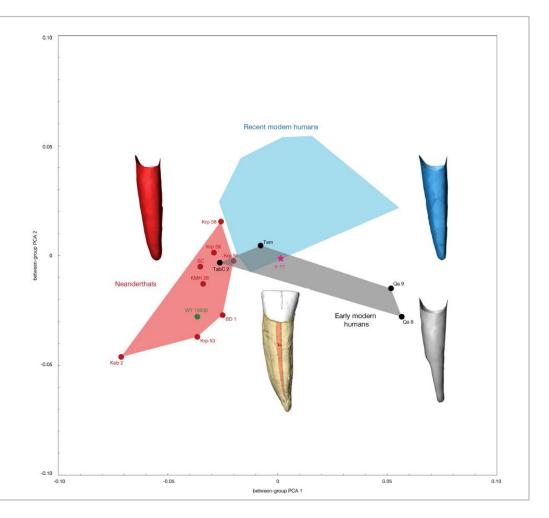
Other examples...

... skulls among *Homo* groups



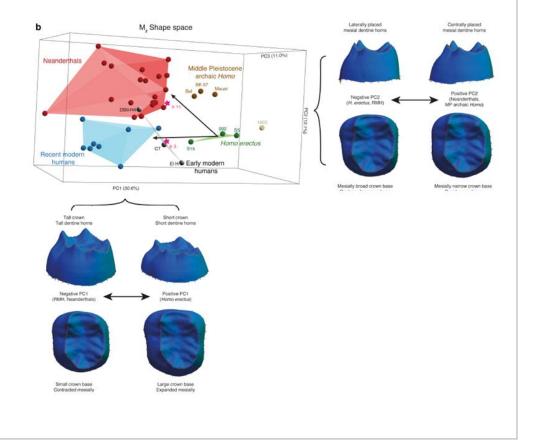
Other examples...

... skulls among *Homo* groups



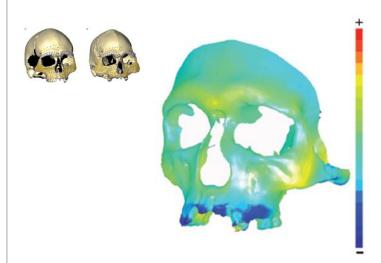
Other examples...

... roots among Homo groups



Other examples...

... molars among *Homo* groups

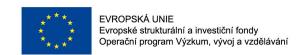


Other examples...


... sexual dimorphism in *Homo* groups

heat map highlighting differences between Oberkassel female and Oberkassel male

superimposition of recent modern human female (in gray) and male (in bone color) mean shape



References:

- Freidline, S.E., Gunz, P., Hublin, J.-J., 2015. Ontogenetic and static allometry in the human face: Contrasting Khoisan and Inuit: ONTOGENETIC ALLOMETRY OF FACIAL FEATURES. Am. J. Phys. Anthropol. 158, 116–131. https://doi.org/10.1002/ajpa.22759
- Freidline, S.E., Gunz, P., Hublin, J.J., n.d. Semilandmark geometric morphometric analysis of the Oberkassel faces: A study of allometry.
- Freidline, S.E., Gunz, P., Janković, I., Harvati, K., Hublin, J.J., 2012. A comprehensive morphometric analysis of the frontal and zygomatic bone of the Zuttiyeh fossil from Israel. J. Hum. Evol. 62, 225–241. https://doi.org/10.1016/j.jhevol.2011.11.005
- Gunz, P., Bookstein, F.L., Mitteroecker, P., Stadlmayr, A., Seidler, H., Weber, G.W., 2009. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl. Acad. Sci. 106, 6094–6098. https://doi.org/10.1073/pnas.0808160106
- Gunz, P., Mitteroecker, P., Bookstein, F.L., 2005. Semilandmarks in Three Dimensions, in: Slice, D.E. (Ed.), Modern Morphometrics in Physical Anthropology. Kluwer Academic Publishers-Plenum Publishers, New York, pp. 73–98. https://doi.org/10.1007/0-387-27614-9_3
- Hublin, J.-J., Ben-Ncer, A., Bailey, S.E., Freidline, S.E., Neubauer, S., Skinner, M.M., Bergmann, I., Le Cabec, A., Benazzi, S., Harvati, K., Gunz, P., 2017. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292. https://doi.org/10.1038/nature22336
- Mitteroecker, P., Gunz, P., 2009. Advances in Geometric Morphometrics. Evol. Biol. 36, 235–247. https://doi.org/10.1007/s11692-009-9055-x
- Wilczek, J., 2013. Prostorová dokumentace artefaktů 003 Metody akvizice prostoroých dat. E-learning materials, Masarykova univerzita, Brno. https://elf.phil.muni.cz/.
- www.wikipedia.org
- http://nazgamestudies.blogspot.com/2015/07/2d-games-have-been-around-since.html

